Magnetic phase transitions in Dy3+ and Tb3+ aluminoborates below 700 mK and their nature: quantum or classical.

13.04.2023
Data: 18.04.2023
Miejsce wydarzenia: aula Wydziału Fizyki, Kampus UwB, ul. K. Ciołkowskiego 1L
Godzina: 13:15
Przejdź do kalendarza Zapisz w kalendarzu Zapisz w kalendarzu Google pokaż na mapie

Dnia 2023-04-18 o godzinie 13:15 w sali 2011 Wydziału Fizyki odbędzie się wykład, na którym ddr Tatiana Zajarniuk z Instytutu Fizyki PAN w Warszawie wygłosi wykład pt:

Magnetic phase transitions in Dy3+ and Tb3+ aluminoborates below 700 mK and their nature: quantum or classical.

Serdecznie zapraszamy

Andrzej Maziewski

Jerzy Przeszowski

Magnetic phase transitions in Dy3+ and Tb3+ aluminoborates below 700 mK and their nature: quantum or classical.

Tatiana Zajarniuk

Rare earth aluminum borates RAl3(BO3)4 (R-rare earth ion) crystallize in the trigonal system with space group R32 [1]. They are very attractive materials in the view of their physical properties. For example, it was proven in ref. [2], that the aluminoborates exhibit a very strong magnetoelectric effect. The aluminoborates are very interesting materials also from the point of view of applications. e.g., the YAl3(BO3)4 and GdAl3(BO3)4 compounds doped with Nd are applied in self frequency doubling lasers and NdAl3(BO3)4 is used in minilasers [3].

Specific heat, CB, of a Tb3+ and Dy3+ aluminoborates were studied for temperatures 50 mK < T < 300 K, with emphasis on the T < 1 K range, where a phase transitions were found at temperature about 0.6 K. To analyze the obtained results, the magnetic contribution to CB was extracted from the total specific heat measured. It was done by considering three contributions to CB, i.e.: the lattice, nuclear, and magnetic ones. The magnetic contribution was determined by subtracting the estimated lattice and nuclear contributions from the total CB.

Based on the specific heat and magnetization studies, the magnetic Grüneisen ratio, being the most informative parameter, diverging in the vicinity of quantum transitions, was calculated by using the following formula[4,5]:

The behaviors of both the specific heat and the Grüneisen coefficient Γ as a function of T and of B|| are characteristic of the systems, in which the classical phase transition line is influenced by quantum fluctuations, QF, and ends at a quantum critical point. Based on all the results, we suppose that QF dominate the behavior of the system and destroy the long range order, i.e., we suppose the transition found to have a quantum character.

The interpretation that we deal with the transition to the ferromagnetic order of the magnetic moments of the rare earth ion is the most natural, intuitive, and supported by the M studies. However, such a transition should be smeared and shifted to higher T by B||, while we observe the opposite effect. Thus, other mechanisms cannot be ruled out. The results of the research on terbium aluminoborate were published in the article [6].

Acknowledgements:

This work was supported partially by the National Science Centre (NCN), Poland, under Project No. 2018/31/B/ST3/03289.

[1] N. I. Leonyuk and L. I. Leonyuk, Prog. Crystal Growth and Charact. 31, 179 (1995).

[2] K.-C. Liang, R. P. Chaudhury, B. Lorenz, Y. Y. Sun, L. N. Bezmaternykh, I. A. Gudim, V. L. Temerov, and C. W. Chu, Phys. Rev. B 83, 180417(R) (2011).

[3] S. García-Revilla, I. Iparraguirre, C. Cascales, J. Azkargorta, R. Balda, M.A. Illarramendi, M. Al-Saleh, J. Fernández, Optical Materials 34, 461 (2011) [4] L. Zhu, M. Garst, A. Rosch, and Q. Si, Phys. Rev. Lett. 91, 066404 (2003).

[5] M. Garst and A. Rosch, Phys.Rev. B 72, 205129 (2005).

[6] T. Zajarniuk, A. Szewczyk, P. Wisniewski, M. U. Gutowska, R. Puzniak, H. Szymczak, I. Gudim, V. A. Bedarev, and M. I. Pashchenko, Phys. Rev. B 105 094418 (2022).

©2024 Wszystkie prawa zastrzeżone.

W ramach naszego serwisu www stosujemy pliki cookies zapisywane na urządzeniu użytkownika w celu dostosowania zachowania serwisu do indywidualnych preferencji użytkownika oraz w celach statystycznych. Użytkownik ma możliwość samodzielnej zmiany ustawień dotyczących cookies w swojej przeglądarce internetowej. Więcej informacji można znaleźć w Polityce Prywatności Uniwersytetu w Białymstoku. Korzystając ze strony wyrażają Państwo zgodę na używanie plików cookies, zgodnie z ustawieniami przeglądarki.