Numerical Investigations of Collective Spin-Wave Dynamics in Complex Magnetic Textures and Patterned Ferromagnetic Films

29.01.2026
Data: 03.02.2026
Miejsce wydarzenia: Sala 2011, Wydział Fizyki, ul. K. Ciołkowskiego 1L, Kampus UwB
Przejdź do kalendarza Zapisz w kalendarzu Zapisz w kalendarzu Google pokaż na mapie

Dnia 2026-02-23 o godzinie 13:15 w Sali 2011 Wydziału Fizyki UwB, mgr Mathieu Moalic z Faculty of Physics and Astronomy, Institute of Spintronics and Quantum Information, Adam Mickiewicz University, Poznań wygłosi wykład pt:

„Numerical Investigations of Collective Spin-Wave Dynamics in Complex Magnetic Textures and Patterned Ferromagnetic Films”

Serdecznie zapraszamy

Andrzej Maziewski

Jerzy Przeszowski

„Numerical Investigations of Collective Spin-Wave Dynamics in Complex Magnetic Textures and Patterned Ferromagnetic Films”

Mathieu Moalic

Faculty of Physics and Astronomy, Institute of Spintronics and Quantum Information,Adam Mickiewicz University, Poznań

Spin waves (magnons) offer an energy-efficient alternative to charge-based electronics: they can transport and process information with very low dissipation, and at microwave frequencies their wavelengths can reach the sub-300-nm scale, enabling compact nanoscale components. A central challenge for practical magnonic circuitry is achieving deterministic control over spin-wave spectra, spatial mode profiles, and interactions between functional elements on sub-micrometre length scales. In this thesis, I establish design rules and numerical tools for programmable control of spin waves in patterned ferromagnetic thin films. I also present two open-source software packages developed during this work: the micromagnetic simulator Amumax and the post-processing toolkit Pyzfn, designed for space- and time-efficient analysis of large micromagnetic datasets. The research results are organised around three complementary control knobs—anisotropy, geometry, and nonlinearity—implemented in lithography-friendly thin-film platforms. First, I show that anisotropy engineering in perpendicular-anisotropy films patterned with antidots and softened rims enables reconfigurable spectra, including rim-localised edge modes, edge–bulk hybridisation, magnonic bandgaps, and history-dependent non-reciprocity. Building on these textured states, I demonstrate strong exchange-mediated magnon–magnon coupling between confined and propagating modes, tunable by field magnitude and magnetic history. Next, I exploit nonlinear dynamics in a simple hybrid architecture to generate coherent propagating exchange-dominated spin waves via efficient second-harmonic conversion, producing sub-300-nm wavelengths with a field- and geometry-tunable output. Then, I investigate hierarchical confinement in deterministic Sierpiński-triangle magnonic fractals, yielding geometrically and field-rotation-tunable minibands and bandgaps. I finally report experimental validation of bandgaps and defect cavities in a low-loss 1D YIG hole-based magnonic nanocrystal. Together, these results provide a practical framework for programmable magnonics with controllable spectra, interactions, and on-chip frequency conversion.

References: 

  • M. Moalic, M. Krawczyk, M. Zelent, "Spin-wave spectra in antidot lattice with inhomogeneous perpendicular magnetic anisotropy," Journal of Applied Physics 132(21), 213901 (2022).
  • M. Moalic, M. Zelent, K. Szulc, M. Krawczyk, "The role of non-uniform magnetisation texture for magnon-magnon coupling in an antidot lattice," Scientific Reports 14(1), 11501 (2024).
  • M. Moalic, Y. Patat, M. Zelent, M. Krawczyk, "Efficient generation of second-harmonic propagating spin waves in a thin, out-of-plane-magnetised ferromagnetic film," arXiv preprint 2509.07705 (2025).
  • R. Mehta, M. Moalic, M. Krawczyk, S. Saha, "Tunability of spin-wave spectra in a 2D triangular shaped magnonic fractals," Journal of Physics: Condensed Matter 35(32), 324002 (2023).
  • K. O. Levchenko et al., "1D YIG hole-based magnonic nanocrystal," Applied Physics Letters 127, 172401 (2025).

Software (open source)

©2024 Wszystkie prawa zastrzeżone.

W ramach naszego serwisu www stosujemy pliki cookies zapisywane na urządzeniu użytkownika w celu dostosowania zachowania serwisu do indywidualnych preferencji użytkownika oraz w celach statystycznych. Użytkownik ma możliwość samodzielnej zmiany ustawień dotyczących cookies w swojej przeglądarce internetowej. Więcej informacji można znaleźć w Polityce Prywatności Uniwersytetu w Białymstoku. Korzystając ze strony wyrażają Państwo zgodę na używanie plików cookies, zgodnie z ustawieniami przeglądarki.