Excitation and guiding of propagating spin waves in media with graded magnonic index
The wave solutions of the Landau-Lifshitz equation (spin waves) are characterised by some of the most complex and peculiar dispersion relations among all waves. For example, the spin-wave ("magnonic") dispersion can range from the parabolic law (typical for a quantum-mechanical electron) at short wavelengths to the non-analytical linear type (typical for light and acoustic phonons) at long wavelengths. Moreover, the long-wavelength magnonic dispersion has a gapand is inherently anisotropic, being naturally negative for a range of relative orientations between the effective field and the spin-wave wave vector. Non-uniformities in the effective field and magnetisation configurations enable the guiding and steering of spin waves in a deliberate manner and therefore represent landscapes of graded refractive index (graded magnonic index).1 By analogy to the fields of graded-index photonics and transformation optics, the studies of spin waves in graded magnonic landscapes can be united under the umbrella of the graded-index magnonics theme1 and will be reviewed in this talk. In particular, we will present our recent experimental data acquired using the time-resolved scanning Kerr microscopy (TRSKM) to demonstrate guiding and steering of spin waves in magnonic waveguides.2 The data will be interpreted and supported using numerical micromagnetic simulations and analytical theory. Furthermore, we will use the theory and simulations to demonstrate how the graded magnonic index could also be used to excite propagating spin waves by effectively uniform microwave magnetic fields.3 The research leading to these results has received funding from the Engineering and Physical Sciences Research Council of the United Kingdom under projects EP/L019876/1 and EP/L020696/1 and from the European Union under projects No. 247556 (NoWaPhen) and No. 644348 (MagIC). 1 Davies C.S., Kruglyak V.V. (2015), Low Temperature Physics, 41 (10), 760-766. 2 Davies C.S. et al (2015), Physical Review B, 92 (2), 020408 (R). 3 Davies C.S. et al (2015), Applied Physics Letters, 107 (16), 162401. 4 Davies C.S. et al (2016), to be published.W ramach naszego serwisu www stosujemy pliki cookies zapisywane na urządzeniu użytkownika w celu dostosowania zachowania serwisu do indywidualnych preferencji użytkownika oraz w celach statystycznych. Użytkownik ma możliwość samodzielnej zmiany ustawień dotyczących cookies w swojej przeglądarce internetowej. Więcej informacji można znaleźć w Polityce Prywatności Uniwersytetu w Białymstoku. Korzystając ze strony wyrażają Państwo zgodę na używanie plików cookies, zgodnie z ustawieniami przeglądarki.